Este artigo e o a ser publicado – Parte II – se propõem a apresentar as principais propriedades da Teoria dos Conjuntos, que tem sua origem nos trabalhos do Matemático russo Georg Ferdinand Ludwig Phillipp Cantor, nascido em S. Petersburgo (1845-1918), e são decorrência de três axiomas ou noções primitivas – noções cuja verdade é de si evidente:

a) Conjuntos

A noção de conjunto em Matemática é praticamente a mesma utilizada na linguagem cotidiana: agrupamento, classe, coleção. Por exemplo:

  • Conjunto das letras maiúsculas do alfabeto;
  • Conjunto dos números inteiros pares;
  • Conjunto dos dias da semana;
  • Conjunto dos Presidentes da República do Brasil.

b) Elemento

Cada membro ou objeto que entra na formação do conjunto. Assim:

  • V, I, C, H, E são elementos do primeiro conjunto acima;
  • 2, 4, 6 são elementos do segundo;
  • Sábado, Domingo do terceiro; e
  • FHC, Lula do último.

c) Pertinência entre elemento e conjunto

Por exemplo, V é um elemento do conjunto das letras maiúsculas do alfabeto, ou seja, V pertence àquele conjunto. Enquanto que v não pertence.

Como se vê são conceitos intuitivos e que se supõe sejam entendidos (evidentes) por todos.

Notação

Conjunto: Representado, de forma geral, por uma letra maiúscula A, B, C, …

Elemento: Por uma letra minúscula a, b, c, x, y, z, …

Pertinência: Sejam A um conjunto e x um elemento. Se x é um elemento de A (ou x pertence a A) indicamos por:

x pertence ao conjunto A

Caso contrário, ou seja, se x não é um elemento de A (ou x não pertence a A) escrevemos:

x não pertence ao conjunto A

Representações de Conjuntos

a) Extensão ou Enumeração

Quando o conjunto é representado por uma listagem ou enumeração de seus elementos. Devem ser escritos entre chaves e separados por vírgula ou ponto-e-vírgula.

Exemplos:

  • Conjunto dos nomes de meus filhos: {Larissa, Júnior, Thiago, Juliana, Fabiana};
  • Conjunto dos meses com menos de 31 dias: {fevereiro, abril, junho, setembro, novembro};
  • Conjunto dos números pares inteiros maiores do que 8 e menores do que 22: {10; 12; 14; 16; 18; 20}.

Observações:

  1. Na representação por extensão cada elemento deve ser escrito apenas uma vez;
  2. É uma boa prática adotar a separação dos elementos em conjuntos numéricos como sendo o ponto-e-vírgula, para evitar confusões com as casas decimais: {2;3;4} e {2,3;4};
  3. Esta representação pode, também, ser adotada para conjuntos infinitos em que se evidencia a lei de formação de seus elementos e colocando-se reticências no final: {2, 4, 6, 8, 10, …};
  4. Representação semelhante pode ser adotada para conjuntos finitos com um grande número de elementos: {0, 1, 2, 3, …, 100}.

b) Propriedade dos Elementos

Representação em que o conjunto é descrito por uma propriedade característica comum a todos os seus elementos. Simbolicamente:

A = {x | x tem a Propriedade P}

e lê-se: A é o conjunto dos elementos x tal que (|) x tem a propriedade P.

Exemplos:

  • A = {x | x é um time de futebol do Campeonato Brasileiro de 2006};
  • B = {x | x é um número inteiro par e 8 < x < 22}. Último exemplo do item a) acima;
  • C = {x | x é um deputado federal eleito em 2006}.

c) Diagrama de Euler-Venn

Um conjunto pode ser representado por meio de uma linha fechada e não entrelaçada, como mostrado na figura abaixo. Os pontos dentro da linha fechada indicam os elementos do conjunto.

Diagrama de Euler-Venn

Conjunto Unitário e Conjunto Vazio

Embora o conceito intuitivo de conjunto nos remeta à idéia de pluralidade (coleção de objetos), devemos considerar a existência de conjunto com apenas um elemento, chamados de conjuntos unitários, e o conjunto sem qualquer elemento, chamado de conjunto vazio (Ø).

O conjunto vazio é obtido quando descrevemos um conjunto onde a propriedade P é logicamente falsa.

Exemplos de Conjuntos Unitários:

  • Conjunto dos meses do ano com menos de 30 dias: {fevereiro};
  • Conjunto dos números inteiros maiores do que 10 e menores do que 12: {11};
  • Conjunto das vogais da palavra blog: {o}.

Exemplos de Conjuntos Vazios:

  • {x | x > 0 e x < 0} = Ø;
  • Conjunto dos meses com mais de 31 dias;
  • {x | x2 = -1 e x é um número real} = Ø.

Conjunto Universo

É o conjunto ao qual pertencem todos os elementos envolvidos em um determinado assunto ou estudo, e é simbolizado pela letra U.

Assim, se procuramos determinar as soluções reais de uma equação do segundo grau, nosso conjunto Universo U é R (conjunto dos números reais); se estamos interessados em determinar os deputados federais envolvidos com o mensalão, nesse caso o universo U tem como elementos todos os deputados federais da atual legislatura.

Portanto, é essencial, que ao descrever um conjunto através de uma propriedade P, fixemos o conjunto universo em que estamos trabalhando, escrevendo:

Conjunto Universo

Igualdade de Conjuntos

Dois conjuntos A e B são iguais quando todo elemento de A pertence a B e, reciprocamente, todo elemento de B pertence a A:

Igualdade de ConjuntosObservações:

  1. A título de ilustração: O A invertido na expressão acima significa “para todo”;
  2. {a, b, c, d} = {d, b, a, c}. O que demonstra que a noção de ordem não interfere na igualdade de conjuntos;
  3. É evidente que para A ser diferente de B é suficiente que um elemento de A não pertença a B ou vice-versa: A = {a, b, c} é diferente de B = {a, b, c, d}.

Subconjunto

Um conjunto A é um subconjunto de (está contido em) B se, e sómente se, todo elemento x pertencente a A também pertence a B:

Subconjuntoonde a notaçãoA contido em Bsignifica “A é subconjunto de B” ou “A está contido em B” ou “A é parte de B”. A leitura da notação no sentido inverso é feita como “B contém A”. Observe que a abertura do sinal de inclusão fica sempre direcionado para o conjunto “maior”. Na forma de diagrama é representado como:

Diagrama de Euler-Venn - SubconjuntoExemplos:

  • {1; 2; 3} C {1; 2; 3; 4; 5; 6}
  • Ø C {a, b};
  • {a, b} C {a, b};
  • {a, b, c} ¢ {a, c, d, e}, onde ¢ significa “não está contido”, uma vez que o elemento b do primeiro conjunto não pertence ao segundo.

Observe que na definição de igualdade de conjuntos está explícito que todo elemento de A é elemento de B e vice-versa, ou seja, que A está contido em B e B está contido em A. Assim, para provarmos que dois conjuntos são iguais devemos provar que:

Propriedades da Inclusão

Sejam D, E e F três conjuntos quaisquer. Então valem as seguintes propriedades:

  1. Ø C D: O conjunto vazio é subconjunto de qualquer conjunto;
  2. D C D: Todo conjunto é subconjunto de si próprio (propriedade Reflexiva);
  3. D C E e E C D => D = E: veja acima (propriedade Anti-Simétrica);
  4. D C E e E C F => D C F: Se um conjunto é subconjunto de um outro e este é subconjunto de um terceiro, então o primeiro é subconjunto do terceiro (propriedade Transitiva).

Com exceção da primeira propriedade, a demonstração das demais é bastante intuitiva e imediata. Vamos, portanto, provar a primeira:

Partimos da tese de que se o conjunto vazio não é um subconjunto de D, então é necessário que pelo menos um elemento desse conjunto não esteja contido no conjunto D. Como o conjunto vazio não possui nenhum elemento, a sentença Ø ¢ D é sempre falsa. Logo, o conjunto vazio está contido em D é sempre verdadeira.

Conjunto das Partes

Chama-se Conjunto das Partes de um conjunto E – P(E) – o conjunto formado por todos os subconjuntos de E:

Conjunto das PartesExemplos:

  • Se A = {a, b, c}, então P(A) = {Ø, {a}, {b}, {c}. {a.b}, {a.c}. {b,c}, {a,b,c}}
  • Se B = {a, b}, então P(B) = {Ø, {a}, {b}, {a,b}};
  • Se C = {a}, então P(C) = {Ø, {a}}.

Observações:

  1. Enfatizo, apesar de colocado na própria definição, que os elementos de P(E) são conjuntos;
  2. Assim, deve-se ter atenção quanto ao emprego dos símbolos pertence (não pertence) e contido (não contido);
  3. No primeiro exemplo acima: {a} pertence a P(A) e {{a}} é um subconjunto de P(A);
  4. Se definirmos n(E) como sendo o número de elementos do conjunto E, então n(P(E)) = 2n(E). A propriedade é válida para conjuntos finitos;
  5. Veja nos exemplos: n(A) = 3 e n(P(A)) = 8 = 23, n(B) = 2 e n(P(B)) = 4 = 22 e n(C) = 1 e n(P(C)) = 2 = 21.

A demonstração do item 5. é feita pelo Princípio da Indução Finita e será feita oportunamente.

Por enquanto é só. Aguardem o próximo artigo. Enquanto isto dê a sua opinião nos comentários, ela é muito importante.

Referências

  1. Fundamentos de Matemática Elementar, Gelson Iezzi, Osvaldo Dolce & Carlos Murakami, São Paulo, Atual Editora Ltda, edição 1977;
  2. Matemática para o Ensino Médio: Volume Único, Manoel Jairo Bezerra, São Paulo, Editora Scipione, 2001.