INTRODUÇÃO
Seguindo a ordem natural dos artigos sobre Potenciação e Radiciação será abordado agora as equações exponenciais. Antes, será fornecida uma breve noção sobre o conceito e propriedades da função exponencial. Considera-se, também, como pré requisito para o entendimento deste artigo o conceito de função.
Com este artigo espero atender aos questionamentos, pertinentes ao assunto, colocados nos comentários dos artigos mencionados acima.
FUNÇÃO EXPONENCIAL
a) Definição
Dado um número real a, a > 0 e a diferente de 1, definimos função exponencial de base a à função f de R em R que associa a cada x real o número real ax. Simbolicamente:
Observações, Propriedades e Exemplos:
- A função exponencial é definida sómente para base a positiva, uma vez que se a é negativo teríamos valores da imagem ax não pertencente ao conjunto dos números reais. Por exemplo para a = -2 e x = 1/2, ax é igual à raiz quadrada de -2 (ver a propriedade P7 do artigo sobre Radiciação ), que pertence ao conjunto dos números complexos, contradizendo a definição da função exponencial;
- A base também tem que ser diferente de 1 porque para todo x real teríamos como imagem, sempre, o valor 1, uma vez que 1 elevado a x é igual a 1 para qualquer que seja o x. Em outras palavras a imagem seria o conjunto unitário {1}, o que também contradiz a definição. E a não pode ser zero pois teríamos uma indeterminação para x = 0;
- A função obtida acima é denominada de função constante, f(x) = c, x real, onde c = 1;
- Qualquer que seja a função exponencial temos que: para x = 0 => f(0) = a0 = 1. Ou seja, o par ordenado (0, 1) pertence à função para todo a no conjunto dos reais positivos diferente de 1. Isto significa que o gráfico cartesiano da função exponencial corta o eixo y no ponto de ordenada 1;
- Uma função f é dita crescente se dados x1 < x2 pertencentes ao seu domínio, então as imagens correspondentes obedecem a relação f(x1) < f(x2);
- Uma função f é dita descrescente se x1 < x2 então f(x1) > f(x2);
- No caso da função exponencial ela é crescente se, e sómente se, a > 1. E descrescente se, e somente se, 0 < a < 1. A demonstração da propriedade não será feita aqui;
- A função exponencial é injetora, ou seja, dados x1 diferente de x2 então f(x1) é diferente de f(x2). Esta propriedade é decorrência direta da propriedade acima;
- Como a base a é maior que zero, temos que ax > 0 para todo x real. Daqui segue que o conjunto imagem da função exponencial é o conjunto dos números reais positivos;
- Da propriedade acima concluí-se que a curva representativa (gráfico) da função está toda acima do eixo dos x;
- Exemplos de funções exponenciais:
b) Teoremas
Neste tópico serão apresentados os principais teoremas sobre as funções exponenciais.
T1. Dados a e x pertencentes ao conjunto dos reais, a > 1, então:
Não será apresentada a demonstração que depende de outros fatos não tratados aqui.
T2. Dados a, x1 e x2 pertencentes aos conjunto dos reais, a > 1, então:
Demonstração:
Daqui, pelo teorema T1 temos:
T3. Dados a e x pertencentes ao conjunto dos reais, 0 < a < 1, então:
Demonstração:
Pelo teorema T1, vem que:
T4. Dados a, x1 e x2 pertencentes aos conjunto dos reais, 0 < a < 1, então:
A demonstração deste teorema deixo para o leitor.
EQUAÇÕES EXPONENCIAIS
a) Definição
Equações exponenciais são, simplesmente, equações com incógnita no expoente.
Exemplos:
Os dois métodos fundamentais utilizados na resolução de equações exponenciais são:
- Método de redução a uma base comum;
- Método que utiliza o conceito e propriedades de logaritmos.
Trataremos neste artigo apenas do primeiro método. O segundo será visto em outro artigo sobre logaritmo.
b) Método de redução a uma base comum
Este método, como o próprio nome diz, consiste no uso de técnicas que permitam, através de transformações baseadas nas propriedades de potências, reduzir ambos os membros de uma equação a uma potência de mesma base. É claro que o método só poderá ser utilizado caso seja possível a redução.
Como a função exponencial é injetora podemos concluir que:
ou seja, que potências iguais e de mesma base têm expoentes iguais.
c) Exercícios Resolvidos
Os exercícios foram selecionados visando apresentar técnicas de soluções diferenciadas.
Referência:
- Fundamentos de Matemática Elementar, Gelson Iezzi, Osvaldo Dolce & Carlos Murakami, São Paulo, Atual Editora Ltda, edição 1977.
pedro barros diowaku
jun 26, 2009 @ 06:41:46
gostei bastante do site espero que contnuam, por favor se é possivel enviam – me exercicios que tem haver com equaçoes exponecias resolvidos e outros nao resolvidos por que preciso muito de aprender ainda nao entendo bem desta unidade, estou a fazer 12ª classe.
obrigado.
pedro barros
luanda – Angola
espero a resposta.
julia
jun 25, 2009 @ 16:56:35
adoreiiii as dicas………. mto obrigada, elas me ajudaram muito !!!!!!!!
marcia tonete
jun 21, 2009 @ 18:00:55
como resolve essas equações exponenciais? >> 2 elevado a 2x + 32 = 12. 2 elevado a x. E … essa daki >> 3 elevado a x + 3 elevado a X – 1 _ 3 elevado a x – 2
pow favor me ajudeM!
daniela coutinho
jun 08, 2009 @ 18:25:08
como se resolve 9 elevado a x menos 2 vezes 3 elevado a x menos 1 =7 em conjunto verdade das equaçoes em R me ajudemmmmmm..
douglas
jun 08, 2009 @ 17:36:26
5*+3=1
EDVANIAOLIVEIRA SILVA
jun 08, 2009 @ 11:27:45
GOSTARIA DE SABER O RESULTADO DESTA EQUAÇÃO X AO QUADRADO-3X+2 igual a 0
Angelo
jun 03, 2009 @ 18:25:59
Estou com um problema pra resolver esta equação serei grato se me ajudarem!!!
x x
o conjunto verdade da equação exponencial 25 – 3,5 – 10 = 0
Weulerson Sousa
jun 03, 2009 @ 15:14:45
Gostaria de saber se consegue resolver esta questão:
integral e (1-x)dx
e = elevado a (1-x)
Rosana Stefanovicz
maio 29, 2009 @ 09:41:41
qual a resolução quando o numero for (-2)elevado a 4vezes(-3)elevado a 3 vezes(-6)elevado a 2
suely
maio 15, 2009 @ 19:26:36
gostaria de ter o seguinte problema resolvido:
Certo tipo de aplicação financeira,em juros compostos,triplica o capital em 15 dias.
a)Qual é a taxa mensal de juros cobrada?
b)Em quantos meses a aplicação renderá 300% de juros?
Márcio
maio 14, 2009 @ 16:12:50
esse site esta me ajudando mt, tenho prova hj e nao sabia nada e agora ja estou com uma base da materia……..q álias eh meia dificil
I hate matematica
KIKAS
maio 12, 2009 @ 07:45:33
BOM TRABALHO, GOSTARIA DE RECEBER MAIS INFORMAÇOES SOBRE MATEMATICA NO MEU IMAIL.
Hélio Franck N. Gula
maio 01, 2009 @ 10:52:19
Saber é viver
JULIANA
abr 29, 2009 @ 14:35:58
E AIAW? GALERA MATEMATICA A MUITO CHATO MESMO… MAS E ASSSIM ….RSRSSRSRSSRRSRS
guilherme
abr 29, 2009 @ 12:06:58
por favor, a soluçao do problema:
o numero de refri vendidos aumenta exponencialmente. em 2000 foram vendidos 4 bilhoes e em 2005 12 bilhoes. quntos serao vendidos no ano de 2010?
Jéssika Ellen Martins Melo
abr 27, 2009 @ 18:10:47
Faço o segundo ano, tenho dois tipos de MATEMÁTICA: a parte de cálculos e a parte de álgebra!!!!!!!! Tenho professores maravilhosos mas minha dificuldade é muito grande!!!!!!!!
Espero que passem informações mais detalhadas e maneiras fáceis de resolver!!!!!!!!
Muito obrigado…….
Jéssika Ellen.
Aluna do segundo ano do Liceu de Messejana (Fortaleza-CE)
Jéssika Ellen Martins Melo
abr 27, 2009 @ 18:04:54
Bom, adorei o site !!!!!!!!!!!
Muito bom, pois os alunos adiquirem mais conhecimentos e não vão só pensar em “orkut e msn”!!!!!!!!!
Pena que minha dificuldade é grande em aprender “MATEMÁTICA”
Bruna
abr 27, 2009 @ 14:46:46
Eu odeio matematica e o prof tb!
Juliana
abr 17, 2009 @ 20:23:53
Por favor, me ajudem a resolver a seguinte equação exponencial: 1/9* = 33/2. E a equação: Log (x+5) + Log (x-4) = Log 10. Aguardarei anciosamente retorno. E desde já, agradeço a colaboração… Bom final de semana…
Geisyelly
abr 15, 2009 @ 17:51:13
eu não sei nem começar a fazer esses tipos de exercicios eu gostaria que fossem mais detalhados…
euclideslino
abr 14, 2009 @ 07:13:43
gostei de aprender as funcoes exponenciais porque estou a muito tempo sem estudar foi bom recordar .
eliete
abr 12, 2009 @ 22:41:27
oi vc poderia me ajudar.estou com dificudade de resolver.quanto dar raiz de tres dividido por dois…obrigado
Raíssa
abr 03, 2009 @ 09:15:13
Oi, estou no 12º ano e o meu professor aconselhou-nos a comprar um livro de apoio com mais exercícios e dos que vi nenhum me pareceu adequado, mas gostei muito da forma como falam dos temas.
Muito Obrigada
antonio
mar 31, 2009 @ 15:27:20
gostaria que resolvessem essa equação, com explicação passo a passo:
x+1 x x-2
2 + 2 – 2 = 88
VILSON
mar 28, 2009 @ 17:31:33
QUERIA RECEBER SE POSSIVEL ALGUNS EXEMPLOS MAIS SIMPLES DE EUAÇAO EXPONENCIAL POIS ESTOU COM DIFICULDADES EM ENTENDER OBRIGADO
Valneide
mar 25, 2009 @ 20:36:46
Olá.tenho realmente muita dificuldade para resolver questões desse porte.se vc fosse + claro eu agradeceria,não que vc não seja!
oBrigada e Deus te abençõe!!!
vicente
mar 19, 2009 @ 15:51:00
gostaria de saber se existe uma outra maneira de resolver uma equação exponencial, quando precisamos fazer uma substituição de variavel. mande pra mim por favor!
desde ja agradeço!!!!
um abraço!
nathalia
mar 18, 2009 @ 11:02:43
ola bvom dia desculpe mas nao estou entendendo as equaçoes exponenciais se elas presisao fatorar
natthy
mar 18, 2009 @ 09:55:30
ola bom dia
gostaria demas geito de saber rosolver de uma forma mas fcil
Ana Cristina
fev 28, 2009 @ 00:32:33
Bom faz um bom tempinho que parei de estudar e voltei a duas semanas mais ou menos..Estou cursando a 2 serie ensino medio e estou com muitas dificuldades e para melhorar não estou conseguindo pegar a explicação do professor que por sua vez marcou prova para semana que vem dia 5/março..e estou perdia teria como vcs me mandarem algum tipo de explicações mas simples??pois no site a explição tá diferente..
Desde Já Agradeço..!!
Jaqueline Santos
fev 26, 2009 @ 22:44:00
Qual a diferença entre log2 e ln2
Michelli
fev 25, 2009 @ 23:19:27
Tirei•algumas•dúvidas.
Elizandro Guedes
fev 25, 2009 @ 08:48:07
muito obrigado pela ajuda
MARQUIT V M CUNHA
fev 21, 2009 @ 18:37:10
NAO ESTOU CONSEGUINDO RESOLVER QUESTOES DA DICIPLINA DE EQUACOES DIFERENCIAIS INTEGRACAO POR SUBSTITUICAO
leandro
fev 19, 2009 @ 18:29:22
muito mssa direi minhas ultimas duvidas..
valew
Iandra
fev 16, 2009 @ 17:48:25
Foi muito bom , me ajudou, pq tinha muita dificuldade
para ententer =).
maria marciana da silva
fev 07, 2009 @ 17:04:40
gostaria que vcs me mandassem 10 questões de equação esponenciais de primeiro grau….
obrigado…
urgente.
Antonio carlos
jan 31, 2009 @ 22:38:15
gosaria de resolver a equação de base 2 e xpoente -111, como eu faço?
wanderlei
jan 27, 2009 @ 13:44:02
Como resolvo 5 elevado a x-10 = 115
paulo
jan 14, 2009 @ 10:58:17
equação exponencial é uma expressão matematica em que A variavel se encontra no expoente, então para resolvela preciso agir da seguinte forma,iguala as bases em anbos os lados, depois acha o valor de X sabendo que as bases são iguais os expoentes tanbem são.2*=8-2*=2.3–X=3
yury
dez 10, 2008 @ 10:01:49
como se resolve essas contas de enequação…. por favor
{ em [ k ] e uma constante [ t ] indica o tempo [ em minutos ] e q [ t ] indica a quantidade de substacia [ grama ] no estante [ t ] sendo q ( 0 ) =2048 , determine
a) k
b) q( 2 )
por favor..
izaias
dez 01, 2008 @ 21:14:20
Gostei muito do site, sou estudante engenharia de controle e automação e preciso de arquivos de controle de malha aberto e malha fechado resolvidos (URGENTE vou fazer prova na quarta proxima ) ajudaria muito principalmente se fosse de seguimento de OGATA. grato
ZÁIAS
cassiano
dez 01, 2008 @ 08:01:07
eu achei muito bom ,interessante e tinha o que eu precisava valewwwww!!!!!!!bjo
Lindeza...
nov 25, 2008 @ 14:44:06
Meu, vcs naum podem traduzir esta página?????
td bem que está em português, mas naum numa linguagem clara qu possamos entender, tendeu?
dxa uma linguagem mais simples para todos entenderem!!!!!!!!!
Valew Galera………..Bjuuuuuuu!!!!!!!!!!!!!!!!!!!!!
stefani cristina de oliveira nascimento
nov 21, 2008 @ 18:18:44
o que eu procurei eu não achei, por isso estou muito triste.
Luiza
nov 20, 2008 @ 10:14:55
Porfavor estou na 6º série gostaria que montasse um saite do de 6º series e 7series obs:separados para fezer contas para pesquisa,porque nao dá eu estudo em escola publica e os meus professores sao pessimos entao gostaria que esse saite ajudasse nois dá 6º e 7º porfavor
Obrigada
amanda
nov 16, 2008 @ 14:23:24
muito bom
ingrid gabriele cardoso
nov 12, 2008 @ 15:22:31
E muito bom pois aprendemos mais sobre esse assunto muito usado no nosso cotidiano eu gosti muito parabéns pela eficencia de voces.
thais
nov 12, 2008 @ 14:59:20
muito legal
wesley
nov 11, 2008 @ 12:25:29
esse site não tem nada que queremos!!!