O Viche tem recebido visitas a partir de pesquisas efetuadas no Google com o termo triângulo em função dos artigos publicados sobre Tecelagem Popular no Triângulo Mineiro. Assim, com o objetivo de atender esse indicativo presente nas estatísticas do blog passo a escrever sobre conceitos relacionados ao termo mencionado: mais especificamente sobre Semelhança entre Triângulos.
Antes, vamos definir o que é congruência entre triângulos.
Congruência entre Triângulos
Dois triângulos (ou de forma geral, duas figuras planas) são congruentes quando têm a mesma forma e as mesmas dimensões, ou seja, o mesmo tamanho.
Já a semelhança entre triângulos, objeto do artigo, aborda o conceito mais amplo onde se tem triângulos com a mesma forma, mas não necessariamente com o mesmo tamanho. Em outras palavras, congruência é um caso particular de semelhança entre triângulos no sentido de que se dois triângulos são congruentes necessariamente eles são semelhantes, mas o contrário não é verdadeiro, como você observará daqui em diante.
Definição de Semelhança entre Triângulos
Dizemos que dois triângulos são semelhantes se, e somente se, possuem seus três ângulos ordenadamente congruentes e os lados homólogos (homo = mesmo, logos = lugar) proporcionais.
Traduzindo a definição em símbolos:
Observe que as três primeiras expressões entre os parêntesis indicam a congruência ordenada dos ângulos e a última a proporcionalidade dos lados homólogos.
Em bom português, podemos, ainda, definir a semelhança entre triângulos através da frase: dois triângulos são semelhantes se um pode ser obtido pela expansão uniforme do outro (caso deseje comprovar veja o programa em Java descrito abaixo).
Razão de Semelhança
Denominamos o número real k, que satisfaz as igualdades abaixo entre os lados homólogos, como a razão de semelhança dos triângulos:
Para uma idéia melhor dos conceitos acima sugiro uma visita ao programa em Java de Karlos Gomes. A imagem inicial da página é apresentada a seguir, onde temos dois triângulos entre um feixe de três retas com origem no ponto C. Ao arrastar o triângulo rosa para cima ou para baixo, o ponto em vermelho no segmento de reta indica o valor da razão de semelhança correspondente. Ao colocar o triângulo rosa exatamente sobre o verde você observará que a razão de semelhança é igual a 1, como era de se esperar (você sabe dizer o significado deste fato?).
O único problema é que o programa demora a carregar. Tenha um pouco de paciência, e espere, vale a pena. Após, por favor, retorne a este artigo :-).
Exemplo
Dados os triângulos ABC e DEF semelhantes com as medidas dos lados indicadas abaixo, calcule as medidas dos lados e e d do segundo triângulo.
Solução:
Como os triângulos são semelhantes por hipótese, vem, pela razão de semelhança, que:
c = kf => k = c/f => k = 4/8 = 1/2
De forma análoga:
a = kd => 8 = (1/2)d => d = 16
b = ke => 6 =(1/2)e => e = 12
Propriedades
a) Reflexiva: Todo triângulo é semelhante a si próprio.
b) Simétrica: Se um triângulo é semelhante a um outro, este é semelhante ao primeiro.
c) Transitiva: Se um triângulo é semelhante a um segundo e este é semelhante a um terceiro, então o primeiro é semelhante ao terceiro.
Teorema Fundamental
Se uma reta é paralela a um dos lados de um triângulo e intercepta os outros dois em pontos distintos, então o triângulo que ela determina é semelhante ao primeiro.
A demonstração do Teorema Fundamental é feita a partir do Teorema de Tales, que por sua vez pode ser demonstrado a partir dos critérios de semelhança definidos abaixo (fica como exercício).
Se um feixe de retas paralelas tem duas transversais, então a razão entre dois segmentos quaisquer de uma é igual à razão entre os segmentos correspondentes na outra.
Demonstração do Teorema Fundamental:
A demonstração da congruência dos ângulos dos triângulos ABC e ADE (figura abaixo) decorre do fato de que ângulos correspondentes determinados por duas paralelas são congruentes. Assim, o ângulo B é congruente ao D e o ângulo C é congruente ao E. Como o ângulo A é comum aos dois triângulos concluímos a primeira parte da demonstração.
Pelo Teorema de Tales temos que:
m(AD)/m(AB) = m(AE)/m(AC) [1]
Por E construímos a reta EF paralela a BD, conforme indicado na figura acima. Do paralelogramo BDEF temos que m(DE) = m(BF). E, novamente, pelo Teorema de Tales:
m(AE)/m(AC) = m(BF)/m(BC) => m(AE)/m(AC) = m(DE)/m(BC) [2]
De [1] e [2] vem que os lados homólogos são proporcionais, o que conclui a demonstração.
Observação: Nos termos do tipo m(AE), utlizados acima, imagine uma barra sobre AE para se ter a notação correta conforme indicado anteriormente.
Critérios de Semelhança de Triângulos
Critério AA => Ângulo-Ângulo: Se dois triângulos têm dois ângulos internos correspondentes congruentes, então os triângulos são semelhantes.
Demonstração:
No caso dos dois triângulos serem congruentes, nada há a demonstrar, pois por definição de congruência os triângulos são necessariamente semelhantes. Suponhamos, então, como indicado na figura, o triângulo ABC maior que o triângulo DEF e construamos o triângulo AGH tal que a medida do lado AG seja igual à medida do lado DE, o ângulo G congruente ao ângulo E e H sobre o lado AC.
Além disso, como o ângulo A é congruente ao ângulo D, por hipótese, o triângulo AGH é congruente ao triângulo DEF (critério ALA da congruência entre triângulos) e portanto semelhantes.
Por outro lado, pelo Teorema Fundamental, temos que o triângulo AGH é semelhante ao triângulo ABC, já que o lado GH é paralelo ao lado BC. E, finalmente, como o triângulo ABC é semelhante ao triângulo AGH, e AGH, por sua vez, é semelhante a DEF, concluímos, pela propriedade transitiva, que o triângulo ABC é semelhante ao triângulo DEF.
As demonstrações dos demais critérios ficam como exercício.
Critério AAA => Ângulo-Ângulo-Ângulo: Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes de outro triângulo, então os triângulos são semelhantes.
Critério LAL => Lado-Ângulo-Lado: Se as medidas de dois dos lados de um triângulo são proporcionais aos homólogos do outro triângulo e os ângulos determinados por estes lados são congruentes, então os triângulos são semelhantes.
Critério LLL => Lado-Lado-Lado: Se as medidas dos lados de um triângulo são respectivamente proporcionais às medidas dos lados correspondentes de outro triângulo, então os triângulos são semelhantes.
Teorema de Pitágoras
Um triângulo é denominado retângulo se um de seus ângulos é reto, ou seja, tem 90 graus. O lado de maior medida é denominado hipotenusa (a) e os outros dois lados de catetos (b e c).
Pitágoras estabeleceu, então, em seu mais famoso teorema que: O quadrado da hipotenusa é igual a soma dos quadrados dos catetos, i.e.:
a2 = b2 + c2
Para finalizar o artigo com chave de ouro vamos demonstrar o Teorema de Pitágoras com o uso dos critérios de semelhança.
Demonstração:
Observe que os triângulos ABH e ABC são semelhantes como decorrência do critério AA, uma vez que ambos possuem um ângulo reto e o ângulo B em comum. Daí tiramos a seguinte relação entre os lados homólogos:
c/a = m/c => c2 = a.m => c2 = a.(a – n) => c2 = a2 – an [1]
Pela mesma razão os triângulos AHC e ABC são semelhantes. Logo:
b/a = n/b => b2 = an [2]
Substituindo [2] em [1] vem que:
c2 = a2 – b2 => a2 = b2 + c2.
caroline
nov 30, 2014 @ 17:09:20
gostei bastante
thais
abr 17, 2013 @ 15:50:42
muitooo otimooo
thais
abr 17, 2013 @ 15:49:52
exelentee…………muitoooo boom
Arlete
abr 01, 2013 @ 20:34:45
adorei muito, agora ja entendi como você fez, foi através da simplificação, e eu me enpessionei muito tomara que eu aprenda tudo isso logo logo
Arlete
abr 01, 2013 @ 20:16:26
Eu gostei muito do moo de explicação, mais eu fiquei em duvida na parte de exemplos de semelhança de triangulos.
cristhian
out 22, 2012 @ 13:38:18
Meu sem isso eu nao pasaria de ano kkkk
daniel repro
ago 14, 2013 @ 17:29:58
e verdade eu tbm
gner
out 14, 2012 @ 09:40:06
excelente!!!!
nessinha
out 08, 2012 @ 14:43:01
nossa gente amei…3 bimestre tirei 10! huuuuuuuu eu sou eu! com a ajuda ds aula na net
thalia cristina
out 04, 2012 @ 16:23:45
nossa nos sofremos muito com tudo que aprendemos pense pra memoriza tudo isso
melina
set 17, 2012 @ 18:33:12
oiiiiiiiiiiiiiiiiiiii
paulo
set 04, 2012 @ 18:15:14
ta me ajudano bastante tira nota boas
Bella
ago 22, 2012 @ 15:16:57
Fera
leandra
ago 22, 2012 @ 11:42:52
muito boa a explicacao otimo
Raissa
jun 16, 2012 @ 16:53:53
gostei. mas se resumisse seria melhor…
paulo campos
jun 08, 2012 @ 20:58:20
sem duvida foi a melhor explicaçao que ja vi valeu…
vanessa kelli
maio 27, 2012 @ 13:03:42
nossa tudo de bm me ajuda muito em geometria e matematica
gostei muito :D
graziele
maio 11, 2012 @ 11:23:19
eu queria ver os exercicios
YLMA
abr 15, 2012 @ 12:47:46
SITE MT LEGAL AMEI , NOSSA BOA EXPLICAÇÃO…..
Bruno
abr 04, 2012 @ 20:58:34
Muito bom! Nunca vi essa matéria tão bem explicada quanto nesse artigo.
daysa
mar 21, 2012 @ 09:53:45
este sati e uma maravilha
igor
mar 14, 2012 @ 13:41:29
nao consigo resolve
mt.
roberta alves
mar 14, 2012 @ 11:28:30
ta otimo esse site
Kaio
mar 13, 2012 @ 20:30:58
Muito Bom
jeferson
fev 29, 2012 @ 15:55:50
nossa e site e tudo de bom me ajudo sair do sufoco.
YLMA
abr 15, 2012 @ 12:49:24
MIM AJUDO BASTANTE UFAUFAUFA